vansilikon.blogg.se

Boxplot jmp
Boxplot jmp








boxplot jmp

boxplot jmp

Box ( y = yd, name = xd, boxpoints = 'all', jitter = 0.5, whiskerwidth = 0.2, fillcolor = cls, marker_size = 2, line_width = 1 ) ) fig. You can get various types of Boxplots (Quantile and Outlier) and other options by manipulating the output.

boxplot jmp

JMP does not know the name boxplot, but it does give automat-ically give a boxplot when you make a histogram using using the distribution option (detailed above).

Boxplot jmp zip#

Figure () for xd, yd, cls in zip ( x_data, y_data, colors ): fig. 3.2 Making a boxplot in JMP (single sample) Input data in JMP. Import aph_objects as go x_data = N = 50 y0 = ( 10 * np. update_layout ( xaxis = dict ( showgrid = False, zeroline = False, showticklabels = False ), yaxis = dict ( zeroline = False, gridcolor = 'white' ), paper_bgcolor = 'rgb(233,233,233)', plot_bgcolor = 'rgb(233,233,233)', ) fig. Figure ( data = ) for i in range ( int ( N ))]) # format the layout fig. # Use list comprehension to describe N boxes, each with a different colour and with different randomly generated data: fig = go. c = # Each box is represented by a dict that contains the data, the type, and the colour. # Plotly accepts any CSS color format, see e.g. Import aph_objects as go import numpy as np N = 30 # Number of boxes # generate an array of rainbow colors by fixing the saturation and lightness of the HSL # representation of colour and marching around the hue. update_layout ( title_text = "Box Plot Styling Outliers" ) fig. Box ( y =, name = "Only Whiskers", boxpoints = False, # no data points marker_color = 'rgb(9,56,125)', line_color = 'rgb(9,56,125)' )) fig.










Boxplot jmp